login
A225864
Composite numbers for which both sum and product of digits are primes.
1
12, 21, 115, 511, 1112, 1121, 1211, 11711, 13111, 17111, 31111, 71111, 111112, 121111, 211111, 1111115, 1111117, 1111171, 1111511, 1115111, 1151111, 1511111, 1711111, 5111111, 7111111, 111111115, 111111151, 111111311, 111111511, 111115111, 111131111, 111151111
OFFSET
1,1
MATHEMATICA
d[n_] := IntegerDigits[n]; t={}; Do[If[!PrimeQ[n] && PrimeQ[Plus@@(x=d[n])] && PrimeQ[Times@@x], AppendTo[t, n]], {n, 2*10^6}]; t
Select[Range[72*10^5], CompositeQ[#]&&AllTrue[{Total[IntegerDigits[#]], Times@@ IntegerDigits[ #]}, PrimeQ]&] (* The program generates the first 25 terms of the sequence. *) (* Harvey P. Dale, May 24 2024 *)
PROG
(Python)
from __future__ import division
from sympy import isprime
A225864_list = []
for l in range(1, 20):
plist, q = [p for p in [2, 3, 5, 7] if isprime(l-1+p)], (10**l-1)//9
for i in range(l):
for p in plist:
r = q+(p-1)*10**i
if not isprime(r):
A225864_list.append(r) # Chai Wah Wu, Aug 15 2017
CROSSREFS
Sequence in context: A201015 A044005 A321771 * A134514 A030299 A352991
KEYWORD
nonn,base
AUTHOR
Jayanta Basu, May 18 2013
EXTENSIONS
Extended by T. D. Noe, May 18 2013
STATUS
approved