login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225864
Composite numbers for which both sum and product of digits are primes.
1
12, 21, 115, 511, 1112, 1121, 1211, 11711, 13111, 17111, 31111, 71111, 111112, 121111, 211111, 1111115, 1111117, 1111171, 1111511, 1115111, 1151111, 1511111, 1711111, 5111111, 7111111, 111111115, 111111151, 111111311, 111111511, 111115111, 111131111, 111151111
OFFSET
1,1
MATHEMATICA
d[n_] := IntegerDigits[n]; t={}; Do[If[!PrimeQ[n] && PrimeQ[Plus@@(x=d[n])] && PrimeQ[Times@@x], AppendTo[t, n]], {n, 2*10^6}]; t
Select[Range[72*10^5], CompositeQ[#]&&AllTrue[{Total[IntegerDigits[#]], Times@@ IntegerDigits[ #]}, PrimeQ]&] (* The program generates the first 25 terms of the sequence. *) (* Harvey P. Dale, May 24 2024 *)
PROG
(Python)
from __future__ import division
from sympy import isprime
A225864_list = []
for l in range(1, 20):
plist, q = [p for p in [2, 3, 5, 7] if isprime(l-1+p)], (10**l-1)//9
for i in range(l):
for p in plist:
r = q+(p-1)*10**i
if not isprime(r):
A225864_list.append(r) # Chai Wah Wu, Aug 15 2017
CROSSREFS
Sequence in context: A201015 A044005 A321771 * A134514 A030299 A352991
KEYWORD
nonn,base
AUTHOR
Jayanta Basu, May 18 2013
EXTENSIONS
Extended by T. D. Noe, May 18 2013
STATUS
approved