login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225834 Number of binary pattern classes in the (10,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other. 12
1, 528, 262912, 268713984, 274878693376, 281475261923328, 288230376957018112, 295147905471410601984, 302231454904481927397376, 309485009821644135887536128, 316912650057058194799105933312, 324518553658427033027930681769984, 332306998946228969090642893525221376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (1024,1024,-1048576).

FORMULA

a(n) = 2^10*a(n-1) + 2^10*a(n-2) - (2^10)^2*a(n-3), with n>2 , a(0)=1, a(1)=528, a(2)=262912.

a(n) = 2^(5n-3)*(2^(5n+1)-(2^5-1)*(-1)^n+2^5+5).

G.f.: (1-496*x-278784*x^2)/((1-32*x)*(1+32*x)*(1-1024*x)).

MATHEMATICA

CoefficientList[Series[(1 - 496 x - 278784 x^2) / ((1 - 32 x) (1 + 32 x) (1 - 1024 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Sep 04 2013 *)

PROG

(MAGMA) [2^(5*n-3)*(2^(5*n+1)-(2^5-1)*(-1)^n+2^5+5): n in [0..20]]; // Vincenzo Librandi, Sep 04 2013

CROSSREFS

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.

A225826 to A225834  are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .

A225910 is the table of (m,n)-rectangular grids.

Sequence in context: A233087 A008690 A282292 * A263909 A233173 A233128

Adjacent sequences:  A225831 A225832 A225833 * A225835 A225836 A225837

KEYWORD

nonn,easy

AUTHOR

Yosu Yurramendi, May 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 23:56 EST 2018. Contains 299595 sequences. (Running on oeis4.)