The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225808 Values (Sum_{1<=i<=k} x_i)^2 = Sum_{1<=i<=k} x_i^3 for 1 <= x_1 <= x_2 <=...<= x_k ordered lexicographically according to (x1, x2,..., xk). 2
 1, 9, 16, 36, 81, 81, 100, 144, 256, 169, 225, 324, 361, 625, 144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296, 484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) <= k^4 where k is the size of the ordered tuple (x_1, x_2,..., x_k). This sequence is closed under multiplication, that is, if m and n are in this sequence, so is m*n. LINKS Balarka Sen, Rows n = 1..10 of irregular triangle, flattened Edward Barbeau and Samer Seraj, Sum of cubes is square of sum, arXiv:1306.5257 [math.NT], 2013. John Mason, Generalising 'sums of cubes equal to squares of sums', The Mathematical Gazette 85:502 (2001), pp. 50-58. Alasdair McAndrew, A cute result relating to sums of cubes David Pagni, 82.27 An interesting number fact, The Mathematical Gazette 82:494 (1998), pp. 271-273. Balarka Sen, Table of rows, n = 1..10 W. R. Utz, The Diophantine Equation (x_1 + x_2 + ... + x_n)^2 = x_1^3 + x_2^3 + ... + x_n^3, Fibonacci Quarterly 15:1 (1977), pp. 14, 16. Part 1, part 2. EXAMPLE 1; 9, 16; 36, 81; 81, 100, 144, 256; 169, 225, 324, 361, 625; 144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296; 484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089, 1600, 1296, 1600, 2025, 2401; MATHEMATICA row[n_] := Reap[Module[{v, m}, v = Table[1, {n}]; m = n^(4/3); While[ v[[-1]] < m, v[[1]]++; If[v[[1]] > m, For[i = 2, i <= m, i++, If[v[[i]] < m, v[[i]]++; For[j = 1, j <= i - 1, j++, v[[j]] = v[[i]]]; Break[]]]]; If[Total[v^3] == Total[v]^2, Sow[Total[v]^2]]]]][[2, 1]]; Array[row, 7] // Flatten (* Jean-François Alcover, Feb 23 2019, from PARI *) PROG (PARI) row(n)=my(v=vector(n, i, 1), N=n^(4/3)); while(v[#v]N, for(i=2, N, if(v[i]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 01:10 EDT 2024. Contains 372806 sequences. (Running on oeis4.)