login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225760 Counts of internal lattice points within more than one primitive Pythagorean triangle (PPT). 0
2287674594, 983574906769, 16155706018465, 24267609913869, 72461523834219, 367110963344658, 473161567692022 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A PPT can be drawn as a closed lattice polygon with the hypotenuse intersecting no lattice points other than at its start and end. Consequently the PPT is subject to Pick's theorem.

LINKS

Table of n, a(n) for n=1..7.

Eric W. Weisstein, MathWorld: Pick's Theorem

Wikipedia, Pick's theorem

FORMULA

If integers a < b are the perpendicular sides of a PPT, then Pick's theorem gives the count of internal lattice points, I = (a-1)*(b-1)/2 and is comparable to the area, A = a*b/2.

EXAMPLE

a(1) = 2287674594 as it is the first count of internal lattice points within more than one PPT. It has (a, b) = (18108, 252685) and (28077, 162964).

MATHEMATICA

getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getlist[j_] := (newlist=getpairs[j]; Table[(newlist[[m]][[1]]^2-newlist[[m]][[2]]^2-1) (2newlist[[m]][[1]]*newlist[[m]][[2]]-1)/2, {m, 1, Length[newlist]}]); maxterms=4000; table=Sort[Flatten[Table[getlist[2p+1], {p, 1, 2maxterms}]]]; n=1; table1={}; While[n<Length[table], (If[table[[n+1]]==table[[n]], table1=Append[table1, table[[n]]]]; n++)]; table1

PROG

(PARI) is(n)=my(b, s, N=2*n); fordiv(n>>valuation(n, 2), a, if(gcd(b=N/a+1, a+1)==1 && issquare(b^2+(a+1)^2) && s++>1, return(1))); 0 \\ Charles R Greathouse IV, May 15 2013

CROSSREFS

Cf. A024407, A225414.

Sequence in context: A274366 A224988 A180688 * A022240 A251490 A277720

Adjacent sequences:  A225757 A225758 A225759 * A225761 A225762 A225763

KEYWORD

nonn,more

AUTHOR

Frank M Jackson, May 15 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 07:10 EDT 2019. Contains 325134 sequences. (Running on oeis4.)