

A225619


Composite numbers that remain composite if any digit is deleted (zero and one are not considered prime).


1



44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 94, 96, 98, 99, 104, 106, 108, 120, 122, 124, 125, 126, 128, 140, 142, 144, 145, 146, 148, 150, 152, 154, 155, 156, 158, 160, 162, 164, 165, 166, 168, 180, 182, 184, 185, 186, 188, 204, 206, 208, 210, 212, 214, 215
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These are sometimes called "deletable composites".


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
Dave Radcliffe, Python program/code


EXAMPLE

142 is composite. If the 1 is deleted, 42 is composite. If the 4 is deleted, 12 is composite. If the 2 is deleted, 14 is composite. Therefore, 142 is included in this sequence.


MATHEMATICA

prime01Q[n_] := n == 0  n == 1  PrimeQ[n]; okQ[n_] := Module[{d = IntegerDigits[n]}, Not[Or @@ prime01Q /@ Table[FromDigits[Delete[d, i]], {i, Length[d]}]]]; Select[Range[215], ! PrimeQ[#] && okQ[#] &] (* T. D. Noe, Aug 14 2013 *)


CROSSREFS

Cf. A202262 (composite numbers in which all substrings are composite).
Sequence in context: A242934 A038400 A254750 * A121610 A254752 A063837
Adjacent sequences: A225616 A225617 A225618 * A225620 A225621 A225622


KEYWORD

nonn,base,easy


AUTHOR

Derek Orr, Aug 04 2013


STATUS

approved



