login
A225465
Triangular array read by rows. T(n,k) is the number of rooted forests on {1,2,...,n} in which one tree has been specially designated that contain exactly k trees; n>=1, 1<=k<=n.
1
1, 2, 2, 9, 12, 3, 64, 96, 36, 4, 625, 1000, 450, 80, 5, 7776, 12960, 6480, 1440, 150, 6, 117649, 201684, 108045, 27440, 3675, 252, 7, 2097152, 3670016, 2064384, 573440, 89600, 8064, 392, 8
OFFSET
1,2
COMMENTS
Row sums = 2n*(n+1)^(n-2) = A089946(offset).
The average number of trees in each forest approaches 5/2 as n gets large.
FORMULA
T(n,k) = binomial(n-1,k-1)*n^(n-k)*k = A061356(n,k)*k(offset).
E.g.f.: y*A(x)*exp(y*A(x)) where A(x) is e.g.f. for A000169.
EXAMPLE
T(2,1)=2 T(2,2)=2
...1'... ...2'... ...1'..2... ...1..2'...
...| ... ...| ... ........... ...........
...2 ... ...1 ... ........... ...........
The root node is on top. The ' indicates the tree which has been specially designated.
1,
2, 2,
9, 12, 3,
64, 96, 36, 4,
625, 1000, 450, 80, 5,
7776, 12960, 6480, 1440, 150, 6,
117649, 201684, 108045, 27440, 3675, 252, 7,
MATHEMATICA
Table[Table[Binomial[n - 1, k - 1] n^(n - k) k, {k, 1, n}], {n, 1,
8}] // Grid
CROSSREFS
Sequence in context: A374303 A372641 A002880 * A248665 A066324 A143146
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, May 08 2013
STATUS
approved