login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5 X n -1,1 arrays such that the sum over i=1..5,j=1..n of i*x(i,j) is zero and rows are nondecreasing (ways to put n thrusters pointing east or west at each of 5 positions 1..n distance from the hinge of a south-pointing gate without turning the gate).
1

%I #8 Sep 05 2018 08:12:24

%S 0,15,0,113,0,427,0,1165,0,2591,0,5053,0,8947,0,14759,0,23017,0,34347,

%T 0,49409,0,68967,0,93813,0,124851,0,163005,0,209317,0,264843,0,330765,

%U 0,408271,0,498681,0,603315,0,723633,0,861087,0,1017275,0,1193781,0

%N Number of 5 X n -1,1 arrays such that the sum over i=1..5,j=1..n of i*x(i,j) is zero and rows are nondecreasing (ways to put n thrusters pointing east or west at each of 5 positions 1..n distance from the hinge of a south-pointing gate without turning the gate).

%H R. H. Hardin, <a href="/A225312/b225312.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-2) - 2*a(n-4) - 2*a(n-6) + 4*a(n-8) - 4*a(n-10) + 2*a(n-12) + 2*a(n-14) - 3*a(n-16) + a(n-18).

%F Empirical g.f.: x^2*(15 + 68*x^2 + 118*x^4 + 140*x^6 + 116*x^8 + 72*x^10 + 14*x^12 - 2*x^14 + x^16) / ((1 - x)^5*(1 + x)^5*(1 + x^2)^2*(1 + x^4)). - _Colin Barker_, Sep 05 2018

%e Some solutions for n=4:

%e ..1..1..1..1....1..1..1..1...-1..1..1..1....1..1..1..1...-1.-1.-1..1

%e .-1.-1.-1..1...-1.-1.-1.-1...-1..1..1..1...-1.-1.-1..1...-1..1..1..1

%e .-1.-1.-1.-1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1...-1.-1..1..1

%e .-1.-1.-1..1....1..1..1..1...-1.-1.-1.-1....1..1..1..1...-1..1..1..1

%e ..1..1..1..1...-1.-1..1..1...-1..1..1..1...-1.-1.-1..1...-1.-1.-1..1

%Y Row 5 of A225310.

%K nonn

%O 1,2

%A _R. H. Hardin_, May 05 2013