login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225312
Number of 5 X n -1,1 arrays such that the sum over i=1..5,j=1..n of i*x(i,j) is zero and rows are nondecreasing (ways to put n thrusters pointing east or west at each of 5 positions 1..n distance from the hinge of a south-pointing gate without turning the gate).
1
0, 15, 0, 113, 0, 427, 0, 1165, 0, 2591, 0, 5053, 0, 8947, 0, 14759, 0, 23017, 0, 34347, 0, 49409, 0, 68967, 0, 93813, 0, 124851, 0, 163005, 0, 209317, 0, 264843, 0, 330765, 0, 408271, 0, 498681, 0, 603315, 0, 723633, 0, 861087, 0, 1017275, 0, 1193781, 0
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 3*a(n-2) - 2*a(n-4) - 2*a(n-6) + 4*a(n-8) - 4*a(n-10) + 2*a(n-12) + 2*a(n-14) - 3*a(n-16) + a(n-18).
Empirical g.f.: x^2*(15 + 68*x^2 + 118*x^4 + 140*x^6 + 116*x^8 + 72*x^10 + 14*x^12 - 2*x^14 + x^16) / ((1 - x)^5*(1 + x)^5*(1 + x^2)^2*(1 + x^4)). - Colin Barker, Sep 05 2018
EXAMPLE
Some solutions for n=4:
..1..1..1..1....1..1..1..1...-1..1..1..1....1..1..1..1...-1.-1.-1..1
.-1.-1.-1..1...-1.-1.-1.-1...-1..1..1..1...-1.-1.-1..1...-1..1..1..1
.-1.-1.-1.-1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1...-1.-1..1..1
.-1.-1.-1..1....1..1..1..1...-1.-1.-1.-1....1..1..1..1...-1..1..1..1
..1..1..1..1...-1.-1..1..1...-1..1..1..1...-1.-1.-1..1...-1.-1.-1..1
CROSSREFS
Row 5 of A225310.
Sequence in context: A277929 A303231 A225346 * A370335 A333845 A015908
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 05 2013
STATUS
approved