login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225239
Numbers n such that there is an integer k with the property that k^tau(n) = sigma(n).
3
1, 3, 217, 862, 1177, 1207, 1219, 3937, 8743, 9481, 13822, 18137, 19567, 19849, 20057, 20257, 20299, 20437, 33607, 57337, 91847, 96217, 100579, 103897, 154969, 157921, 158623, 228889, 233047, 304117, 324817, 325579, 329057, 330529, 537817, 595417, 608287
OFFSET
1,2
COMMENTS
Corresponding values of k: 1, 2, 4, 6, 6, 6, 6, 8, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 14, 16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 24, 24, 24, 24, 24, 28, 28, 28, ... (see A225369).
Conjecture: all terms are squarefree numbers.
Conjecture is false: p = (312^6 / 13) - 1 = 70955197267967 is prime, so sigma(9*p) = sigma(9)*sigma(p) = 13*(p+1) = 312^6 = 312^tau(9*p). - Charlie Neder, Oct 05 2018
LINKS
EXAMPLE
a(4) = 862 because sigma(862) = 1296 = 6^tau(862) = 6^4; k = 6.
PROG
(PARI) c=1; write("b225239.txt", c " " 1); for(n=2, 1943881801, s=sigma(n); if(ispower(s), nd=numdiv(n); r=round(sqrtn(s, nd)); if(r^nd==s, c++; write("b225239.txt", c " " n)))) /* Donovan Johnson, May 05 2013 */
(PARI) isok(n) = if (n==1, return(1)); my(s=sigma(n)); if(ispower(s), my(nd=numdiv(n)); r=sqrtnint(s, nd); (r^nd==s); ); \\ Michel Marcus, Feb 19 2020
CROSSREFS
Cf. A000005 (tau(n): number of divisors of n).
Cf. A000203 (sigma(n): sum of divisors of n).
Cf. A051281 (sigma(n) is a power of tau(n)), A225369.
Sequence in context: A299225 A300037 A342234 * A225362 A373055 A063836
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 04 2013
STATUS
approved