login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225223
Primes of the form p - 1, where p is a practical number (A005153).
4
3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 103, 107, 127, 131, 139, 149, 167, 179, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 271, 293, 307, 311, 347, 359, 367, 379, 383, 389, 419, 431, 439, 449, 461, 463, 467, 479, 499, 503, 509
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(5)=17 as 18 is a practical number, 18-1=17 and it is the 5th such prime.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
Select[Table[Prime[n]+1, {n, 1, 200}], PracticalQ]-1 (* using T. D. Noe's program A005153 *)
PROG
(PARI) isPractical(n)={
if(n%2, return(n==1));
my(f=factor(n), P=1);
for(i=1, #f[, 1]-1,
P*=sigma(f[i, 1]^f[i, 2]);
if(f[i+1, 1]>P+1, return(0))
);
n>0
};
select(p->isPractical(p+1), primes(300)) \\ Charles R Greathouse IV, May 03 2013
CROSSREFS
Sequence in context: A091305 A164319 A085498 * A346794 A226653 A128926
KEYWORD
nonn
AUTHOR
Frank M Jackson, May 02 2013
STATUS
approved