login
A225153
Continued fraction for the positive root of x^x^x^x = 2 (A225134).
2
1, 2, 4, 5, 1, 1, 184, 1, 1, 8, 1, 7, 1, 12, 3, 1, 4, 2, 1, 2, 1, 125, 1, 2, 1, 1, 2, 2, 5, 12, 7, 1, 8, 2, 1, 6, 1, 3, 2, 1, 2, 1, 14, 1, 1, 1, 3, 1, 1, 6485, 1, 1, 1, 3, 1, 2, 1, 1, 1, 17, 1, 2, 3, 3, 3, 2, 7, 1, 2, 1, 8, 1, 9, 1, 1, 7, 1, 4, 9, 1, 1, 1, 1, 3, 2
OFFSET
0,2
COMMENTS
x = 1.44660143242986417... = 1 + 1/(2 + 1/(4 + 1/(5 + 1/(1 + 1/(1 + 1/(184 + 1/(...))))))).
This constant is sometimes called the 4th super-root of 2.
It is unknown if it is rational, algebraic irrational, or transcendental. Hence, it is unknown if this continued fraction is aperiodic, or even if it is infinite.
LINKS
J. Marshall Ash and Yiren Tan, A rational number of the form a^a with a irrational, Mathematical Gazette 96, March 2012, pp. 106-109.
Wikipedia, Super-root
MATHEMATICA
ContinuedFraction[FindRoot[x^x^x^x == 2, {x, 1}, WorkingPrecision -> 110][[1, 2]], 105]
CROSSREFS
Cf. A225134 (decimal expansion), A225208 (Engel expansion), A153510 (second super-root of 2).
Sequence in context: A021412 A258066 A036501 * A360108 A308319 A167380
KEYWORD
nonn,cofr,easy
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 07 2024
STATUS
approved