login
A225152
Let b(k) be A036378, then a(n) is the number of b(k) terms such that 2^n < b(k) <= 2^(n+1).
0
2, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,1
COMMENTS
A036378 is a complete sequence.
EXAMPLE
a(7) = 2 as between 128 and 256 there are 2 terms (A036378) namely 137 and 255.
MATHEMATICA
getterm[n2_] := PrimePi[2^(n2+1)]-PrimePi[2^n2];
termcount[n3_] := (m1=0; While[getterm[m1]<=2^n3, m1++]; m1);
Table[termcount[p+1]-termcount[p], {p, 0, 39}]
CROSSREFS
Sequence in context: A347550 A068320 A111330 * A117447 A377208 A328775
KEYWORD
nonn,more
AUTHOR
Frank M Jackson, Apr 30 2013
STATUS
approved