login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of the convolutory inverse of the primes of the form 6m+1.
2

%I #5 Apr 30 2013 12:15:32

%S 1,-13,36,-258,5622,-31716,-83460,1766388,-2952900,59171652,

%T -2614259136,25907667528,-87008484996,410147565360,-10353918172170,

%U 73320103253412,409638469731702,-7210516315882284,18236866211886120,-161388385633551558,6594430509454957926

%N Numerators of the convolutory inverse of the primes of the form 6m+1.

%C Coefficients in 1/(1+g(x)), where g is the generating functions of the sequence of primes (7,13,19,31,37,...) of primes congruent to 1 mod 6. For the convolutory inverse of the primes, see A030018. Conjecture: a(n+1)/a(n) diverges.

%H Clark Kimberling, <a href="/A225131/b225131.txt">Table of n, a(n) for n = 1..1000</a>

%e (7,13,19,31,37,...)**(1/7, -13/49, 36/343, -258/2401, 5622/16807,...) = (1,0,0,0,0,...), where ** denotes convolution.

%t q = {}; Do[If[PrimeQ[p = 6*n - 1], AppendTo[q, p]], {n, 0, 15000}]; r[n_] := q[[n]]; k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; t = Table[s[n], {n, 1, 40}]; Numerator[t]

%Y Cf. A030018, A225127, A225130.

%K sign,easy

%O 1,2

%A _Clark Kimberling_, Apr 29 2013