login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225131
Numerators of the convolutory inverse of the primes of the form 6m+1.
2
1, -13, 36, -258, 5622, -31716, -83460, 1766388, -2952900, 59171652, -2614259136, 25907667528, -87008484996, 410147565360, -10353918172170, 73320103253412, 409638469731702, -7210516315882284, 18236866211886120, -161388385633551558, 6594430509454957926
OFFSET
1,2
COMMENTS
Coefficients in 1/(1+g(x)), where g is the generating functions of the sequence of primes (7,13,19,31,37,...) of primes congruent to 1 mod 6. For the convolutory inverse of the primes, see A030018. Conjecture: a(n+1)/a(n) diverges.
LINKS
EXAMPLE
(7,13,19,31,37,...)**(1/7, -13/49, 36/343, -258/2401, 5622/16807,...) = (1,0,0,0,0,...), where ** denotes convolution.
MATHEMATICA
q = {}; Do[If[PrimeQ[p = 6*n - 1], AppendTo[q, p]], {n, 0, 15000}]; r[n_] := q[[n]]; k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; t = Table[s[n], {n, 1, 40}]; Numerator[t]
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Apr 29 2013
STATUS
approved