login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225067
Least heptagonal (7-gonal) number that is the product of n heptagonal numbers greater than 1.
1
7, 6426, 35224, 2077992, 3610893055, 14209771072, 118896888880, 6400213601782, 22535310978496008, 22535310978496008, 2418562185097611420000, 2462278542548750181849600
OFFSET
1,1
EXAMPLE
Let hep(n) = n*(5n-3)/2. Then
a(1) = 7 = hep(2).
a(2) = 6426 = hep(51) = hep(4) * hep(9).
a(3) = 35224 = hep(119) = hep(2) * hep(4) * hep(8).
a(4) = 2077992 = hep(912) = hep(2)^2 * hep(3) * hep(31).
a(5) = 3610893055 = hep(38005) = hep(2)^3 * hep(5) * hep(277).
a(6) = 14209771072 = hep(75392) = hep(2)^4 * hep(31) * hep(32).
CROSSREFS
Cf. A000566 (heptagonal numbers).
Cf. A212616, A212617, A225066-A225070 (3-, 5- to 10-gonal cases).
Sequence in context: A125036 A098803 A246853 * A281358 A343145 A068575
KEYWORD
nonn,more
AUTHOR
T. D. Noe, May 01 2013
EXTENSIONS
Corrected a(6) and added a(7)-a(12) by Lars Blomberg, Sep 21 2013
STATUS
approved