OFFSET
1,3
COMMENTS
Compare to: -log( 1 + Sum_{n>=1} (-1)^n*(x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2)) ) = Sum_{n>=1} sigma(n)*x^n/n.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
L.g.f.: A(x) = x + x^2/2 - 2*x^3/3 + x^4/4 + 6*x^5/5 - 8*x^6/6 + 8*x^7/7 + x^8/8 - 11*x^9/9 + 6*x^10/10 + 12*x^11/11 - 20*x^12/12 +...
where
exp(A(x)) = 1 + x + x^2 + x^5 + x^7 + x^12 + x^15 + x^22 + x^26 + x^35 + x^40 + x^51 + x^57 + x^70 + x^77 +...+ x^A001318(n) +...
PROG
(PARI) {a(n)=n*polcoeff(log(1+sum(k=1, n, x^(k*(3*k-1)/2) + x^(k*(3*k+1)/2))+x*O(x^n)), n)}
for(n=1, 80, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 21 2013
STATUS
approved