The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224811 Subsets of {1,2,...,n-8} without differences equal to 2, 4, 6 or 8. 1
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 48, 64, 88, 121, 165, 225, 300, 400, 520, 676, 884, 1156, 1530, 2025, 2700, 3600, 4800, 6400, 8480, 11236, 14840, 19600, 25900, 34225, 45325, 60025, 79625, 105625, 140075, 185761, 246101, 326041, 431676, 571536, 756756, 1002001, 1327326, 1758276, 2329782, 3087049, 4090296, 5419584 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 COMMENTS Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=8, I={-2,0,8}. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135 FORMULA a(n) = a(n-1) +a(n-5) -a(n-6) +a(n-7) -a(n-8) +a(n-9) +2*a(n-10) -a(n-11) +a(n-12) -2*a(n-15) +a(n-16) -2*a(n-17) -a(n-20) +a(n-25). G.f.: (1-x^10-x^5-x^7+x^15) / ( (1-x) *(1+x) *(x^2-x+1) *(x^3+x^2-1) *(x^6-x^2-1) *(x^12+x^10+x^8+2*x^6+x^4+1) ). a(2*k) = (A003520(k))^2, a(2*k+1) = A003520(k) * A003520(k+1) MATHEMATICA CoefficientList[Series[(1 - x^10 - x^5 - x^7 + x^15)/((1 - x)*(1 + x)*(x^2 - x + 1)*(x^3 + x^2 - 1)*(x^6 - x^2 - 1)*(x^12 + x^10 + x^8 + 2*x^6 + x^4 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *) PROG (PARI) x='x+O('x^50); Vec((1-x^10-x^5-x^7+x^15)/((1-x)*(1+x)*(x^2-x+1)*( x^3+x^2-1)*(x^6-x^2-1)*(x^12+x^10+x^8+2*x^6+x^4+1) )) \\ G. C. Greubel, Oct 28 2017 CROSSREFS Cf. A002524-A002529, A072827, A072850-A072856, A079955-A080014, A217694,A224808-A224810. Sequence in context: A194256 A194246 A239873 * A024617 A025698 A194211 Adjacent sequences:  A224808 A224809 A224810 * A224812 A224813 A224814 KEYWORD nonn AUTHOR Vladimir Baltic, May 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 16:00 EDT 2021. Contains 343652 sequences. (Running on oeis4.)