login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224788
E.g.f. satisfies: A(x) = exp( Integral A(x)/(1 - x*A(x)^2) dx ).
1
1, 1, 3, 18, 168, 2142, 34704, 682740, 15810372, 421339176, 12702393792, 427435993512, 15881634963216, 645804320863680, 28527455317884336, 1360332028008819360, 69645942884911181184, 3810436222004101378656, 221867131720533800409216, 13698420738298341356760768
OFFSET
0,3
COMMENTS
Compare to: C(x) = exp( Integral C(x)^2/(1 - x*C(x)^2) dx ), which is satisfied by: C(x) = (1-sqrt(1-4*x))/(2*x) (Catalan numbers, A000108).
Compare to: W(x) = exp( Integral W(x)/(1 - x*W(x)) dx ), which is satisfied by: W(x) = LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
LINKS
FORMULA
E.g.f. derivative: A'(x) = A(x)^2 / (1-x*A(x)^2). - Vaclav Kotesovec, Feb 19 2014
a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * r^(n+1/4)), where r = 0.28396034297... is the root of the equation Ei(1/sqrt(r)) - Ei(1) + exp(1) = (r+sqrt(r)) * exp(1/sqrt(r)), where Ei is the Exponential Integral. - Vaclav Kotesovec, Feb 19 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 18*x^3/3! + 168*x^4/4! + 2142*x^5/5! +...
where
log(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 99*x^4/4! + 1236*x^5/5! + 19752*x^6/6! +...
A(x)/(1-x*A(x)^2) = 1 + 2*x + 11*x^2/2! + 99*x^3/3! + 1236*x^4/4! + 19752*x^5/5! +...
MATHEMATICA
a = ConstantArray[0, 21]; a[[1]]=1; a[[2]]=1; Do[a[[n+2]] = n!*Sum[a[[i+1]]*a[[n-i+1]]/i!/(n-i)!, {i, 0, n}] + n!*Sum[a[[j+1]]/(j-1)!*Sum[a[[i+1]]*a[[n-j-i+1]]/i!/(n-j-i)!, {i, 0, n}], {j, 1, n}], {n, 1, 18}]; a (* Vaclav Kotesovec, Feb 19 2014 *)
FindRoot[ExpIntegralEi[1/Sqrt[r]] - ExpIntegralEi[1] + E == (r+Sqrt[r]) * E^(1/Sqrt[r]), {r, 1/2}, WorkingPrecision->50] (* program for numerical value of the radius of convergence r, Vaclav Kotesovec, Feb 19 2014 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(A/(1-x*A^2 +x*O(x^n))))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A053513 A138211 A052668 * A121423 A375452 A074932
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 28 2013
STATUS
approved