login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224785
Expansion of (1+4*x+8*x^2-x^3)/((1-x)*(1+x)*(1-3*x^2)).
1
1, 4, 12, 15, 45, 48, 144, 147, 441, 444, 1332, 1335, 4005, 4008, 12024, 12027, 36081, 36084, 108252, 108255, 324765, 324768, 974304, 974307, 2922921, 2922924, 8768772, 8768775, 26306325, 26306328, 78918984, 78918987, 236756961, 236756964, 710270892, 710270895
OFFSET
0,2
COMMENTS
A row of the square array A219605.
FORMULA
a(n) = a(n-1) + 3 if n odd.
a(n) = 3*a(n-1) if n even.
a(2n) = (11*3^n - 9)/2.
a(2n+1) = (11*3^n - 3)/2.
a(n) = 4*a(n-2) - 3*a(n-4) with n>3, a(0)=1, a(1)=4, a(2)=12, a(3)=15.
a(n) = A219605(3,n).
a(n) = Sum_{k=0..n} A220354(n,k) * 3^k.
a(n) = (11*3^floor(n/2)-3(-1)^n)/2 -3. - Bruno Berselli, Apr 27 2013
MAPLE
seq( (11*3^floor(n/2) -3*(2+(-1)^n))/2, n=0..40); # G. C. Greubel, Nov 12 2019
MATHEMATICA
Table[(11*3^Floor[n/2] -3*(2+(-1)^n))/2, {n, 0, 40}] (* G. C. Greubel, Nov 12 2019 *)
PROG
(PARI) vector(41, n, (11*3^((n-1)\2) -3*(2-(-1)^n))/2) \\ G. C. Greubel, Nov 12 2019
(Magma) [(11*3^Floor(n/2) -3*(2+(-1)^n))/2: n in [0..40]]; // G. C. Greubel, Nov 12 2019
(Sage) [(11*3^floor(n/2) -3*(2+(-1)^n))/2 for n in (0..40)] # G. C. Greubel, Nov 12 2019
(GAP) List([0..40], n-> (11*3^Int(n/2) -3*(2+(-1)^n))/2 ); # G. C. Greubel, Nov 12 2019
CROSSREFS
Sequence in context: A121728 A324786 A032823 * A195547 A335528 A163838
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Apr 17 2013
STATUS
approved