login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224723
Number of (n+3) X 6 0..2 matrices with each 4 X 4 subblock idempotent.
1
2471, 2493, 3092, 3502, 3775, 4868, 6540, 8551, 10761, 13991, 18817, 25579, 34473, 46520, 63313, 86789, 119077, 163331, 224294, 308650, 425208, 585935, 807537, 1113408, 1535747, 2118724, 2923211, 4033478, 5565990, 7681386, 10601173
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 4*a(n-4) - 3*a(n-5) + 2*a(n-7) - a(n-8) for n>10.
Empirical g.f.: x*(2471 - 4920*x + 555*x^2 + 4154*x^3 - 5445*x^4 + 4172*x^5 + 1601*x^6 - 3457*x^7 + 815*x^8 + 52*x^9) / ((1 - x)^3*(1 + x)*(1 - x - x^4)). - Colin Barker, Sep 04 2018
EXAMPLE
Some solutions for n=2:
..0..1..0..0..0..2....0..0..0..0..0..0....1..0..0..0..2..0....0..1..0..0..0..2
..0..1..0..0..0..0....1..1..1..1..1..2....1..0..0..0..2..0....0..1..0..0..0..1
..0..1..0..0..0..2....0..0..0..0..0..0....1..0..0..0..1..0....0..1..0..0..0..2
..0..1..0..0..0..1....0..0..0..0..0..0....0..0..0..0..1..0....0..2..0..0..0..1
..0..2..0..0..0..1....0..0..0..0..0..0....2..0..0..0..1..0....0..1..0..0..0..1
CROSSREFS
Column 3 of A224728.
Sequence in context: A253355 A204614 A204798 * A183703 A282559 A278733
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 16 2013
STATUS
approved