login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224460
The hyper-Wiener index of the straight pentachain of n pentagonal rings (see Fig. 2.1 in the A. A. Ali et al. reference).
1
91, 263, 589, 1126, 1940, 3106, 4708, 6839, 9601, 13105, 17471, 22828, 29314, 37076, 46270, 57061, 69623, 84139, 100801, 119810, 141376, 165718, 193064, 223651, 257725, 295541, 337363, 383464, 434126, 489640, 550306, 616433, 688339, 766351, 850805, 942046, 1040428, 1146314, 1260076
OFFSET
2,1
LINKS
A. A. Ali and A. M. Ali, Hosoya polynomials of pentachains, Comm. Math. Comp. Chem. (MATCH), 65, 2011, 807-819.
I. Gutman, W. Yan, Y.-N. Yeh, and B.-Y. Yang, Generalized Wiener indices of zigzagging pentachains, J. Math. Chem., 42, 2007, 103-117.
O. Halakoo, O. Khormali, and A. Mahmiani, Bounds for Schultz index of pentachains, Digest J. Nanomaterials and Biostructures, 4, 2009, 687-691.
N. P. Rao and A. L. Prasanna, On the Wiener index of pentachains, Applied Math. Sci., 2, 2008, 2443-2457.
FORMULA
a(n) = (3*n^4 +34*n^3 +145*n^2 -190*n +208)/8.
G.f.: z^2*(91-192*z+184*z^2-99*z^3+25*z^4)/(1-z)^5.
The Hosoya polynomial is [t - 4t^2 - 3t^3 - 2t^5 - 3t^6 + 2t^7 + 4nt - nt^2 - 3nt^3 + nt^5 - nt^7 + t^{n+2} + 4t^{n+3} + 4t^{n+4}](t-1)^2.
MAPLE
a := proc (n) options operator, arrow: (3/8)*n^4+(17/4)*n^3+(145/8)*n^2-(95/4)*n+26 end proc: seq(a(n), n = 2 .. 40);
CROSSREFS
Cf. A224459.
Sequence in context: A051973 A290812 A000864 * A350206 A020441 A209255
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 29 2013
STATUS
approved