login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224459
The Wiener index of the straight pentachain of n pentagonal rings (see Fig. 2.1 in the A. A. Ali et al. reference).
1
55, 133, 259, 442, 691, 1015, 1423, 1924, 2527, 3241, 4075, 5038, 6139, 7387, 8791, 10360, 12103, 14029, 16147, 18466, 20995, 23743, 26719, 29932, 33391, 37105, 41083, 45334, 49867, 54691, 59815, 65248, 70999, 77077, 83491, 90250, 97363, 104839, 112687
OFFSET
2,1
LINKS
A. A. Ali and A. M. Ali, Hosoya polynomials of pentachains, Comm. Math. Comp. Chem. (MATCH), 65, 2011, 807-819.
I. Gutman, W. Yan, Y.-N. Yeh, and B.-Y. Yang, Generalized Wiener indices of zigzagging pentachains, J. Math. Chem., 42, 2007, 103-117.
O. Halakoo, O. Khormali, and A. Mahmiani, Bounds for Schultz index of pentachains, Digest J. Nanomaterials and Biostructures, 4, 2009, 687-691.
N. P. Rao and A. L. Prasanna, On the Wiener index of pentachains, Applied Math. Sci., 2, 2008, 2443-2457.
FORMULA
a(n) = (3*n^3 +21*n^2 -6*n +14)/2.
G.f.: z^2*(55-87*z+57*z^2-16*z^3)/(1-z)^4.
The Hosoya polynomial is [t - 4t^2 - 3t^3 - 2t^5 - 3t^6 + 2t^7 + 4nt - nt^2 - 3nt^3 + nt^5 - nt^7 + t^{n+2} + 4t^{n+3} + 4t^{n+4}](t-1)^2.
MAPLE
a := proc (n) options operator, arrow: (3/2)*n^3+(21/2)*n^2-3*n+7 end proc: seq(a(n), n = 2 .. 40);
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {55, 133, 259, 442}, 40] (* Harvey P. Dale, Mar 18 2023 *)
CROSSREFS
Cf. A224460.
Sequence in context: A039442 A063324 A046156 * A218161 A044306 A044687
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 29 2013
STATUS
approved