login
A224215
Number of nonnegative solutions to x^3 + y^3 + z^3 <= n^3.
5
1, 4, 11, 30, 66, 115, 200, 302, 441, 619, 829, 1085, 1395, 1771, 2200, 2666, 3228, 3843, 4564, 5351, 6185, 7143, 8158, 9349, 10526, 11934, 13375, 14896, 16652, 18381, 20370, 22411, 24629, 26963, 29406, 32101, 34840, 37766, 40920, 44164, 47587, 51200
OFFSET
0,2
LINKS
David A. Corneth, Pari prog
FORMULA
a(n) = [x^(n^3)] (1/(1 - x))*(Sum_{k>=0} x^(k^3))^3. - Ilya Gutkovskiy, Apr 20 2018
EXAMPLE
For n=1, the four solutions are {0,0,0}, {0,0,1}, {0,1,0} and {1,0,0}, so a(1)=4.
PROG
(Python)
for a in range(99):
n = a*a*a
k = 0
for x in range(99):
s = x*x*x
if s>n: break
for y in range(99):
sy = s + y*y*y
if sy>n: break
for z in range(99):
sz = sy + z*z*z
if sz>n: break
k+=1
print(str(k), end=', ')
(PARI) a(n) = n++; p = Pol((1/(1 - x))*sum(k=0, n, x^(k^3))^3 + O(x^(n^3))); polcoeff(p, (n-1)^3); \\ Michel Marcus, Apr 21 2018
(PARI) See PARI link \\ David A. Corneth, May 22 2018
CROSSREFS
Cf. A224214.
Sequence in context: A361218 A024829 A296290 * A308082 A099065 A296262
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Apr 01 2013
STATUS
approved