|
|
A224204
|
|
T(n,k)=Number of nXk 0..3 arrays with rows unimodal and antidiagonals nondecreasing
|
|
12
|
|
|
4, 16, 16, 50, 160, 64, 130, 984, 1600, 256, 296, 4580, 16060, 16000, 1024, 610, 17723, 108625, 263516, 160000, 4096, 1163, 59792, 586343, 2411246, 4357084, 1600000, 16384, 2083, 180821, 2734683, 16355242, 54177872, 72105068, 16000000, 65536
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
.......4..........16............50.............130..............296
......16.........160...........984............4580............17723
......64........1600.........16060..........108625...........586343
.....256.......16000........263516.........2411246.........16355242
....1024......160000.......4357084........54177872........451319098
....4096.....1600000......72105068......1229044416......12652618110
...16384....16000000....1193130640.....27957232796.....357890479324
...65536...160000000...19742052632....636184842092...10153767871028
..262144..1600000000..326659600368..14476260508500..288290902851198
.1048576.16000000000.5405039750704.329391607167600.8186391229197618
|
|
LINKS
|
|
|
FORMULA
|
Empirical: columns k=1..7 have recurrences of order 1,1,7,10,19,25,41 for n>0,0,0,12,23,32,48
Empirical: rows n=1..7 are polynomials of degree 6*n for k>0,0,0,2,3,4,5
|
|
EXAMPLE
|
Some solutions for n=3 k=4
..0..0..1..1....0..1..2..1....1..1..0..0....2..1..1..0....0..1..2..2
..1..1..2..0....3..2..2..0....2..3..3..3....1..3..3..0....1..3..3..3
..1..2..3..3....3..3..3..1....3..3..3..0....3..3..2..1....3..3..3..1
|
|
CROSSREFS
|
Column 2 is 16*10^(n-1)
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|