login
A224204
T(n,k)=Number of nXk 0..3 arrays with rows unimodal and antidiagonals nondecreasing
12
4, 16, 16, 50, 160, 64, 130, 984, 1600, 256, 296, 4580, 16060, 16000, 1024, 610, 17723, 108625, 263516, 160000, 4096, 1163, 59792, 586343, 2411246, 4357084, 1600000, 16384, 2083, 180821, 2734683, 16355242, 54177872, 72105068, 16000000, 65536
OFFSET
1,1
COMMENTS
Table starts
.......4..........16............50.............130..............296
......16.........160...........984............4580............17723
......64........1600.........16060..........108625...........586343
.....256.......16000........263516.........2411246.........16355242
....1024......160000.......4357084........54177872........451319098
....4096.....1600000......72105068......1229044416......12652618110
...16384....16000000....1193130640.....27957232796.....357890479324
...65536...160000000...19742052632....636184842092...10153767871028
..262144..1600000000..326659600368..14476260508500..288290902851198
.1048576.16000000000.5405039750704.329391607167600.8186391229197618
LINKS
FORMULA
Empirical: columns k=1..7 have recurrences of order 1,1,7,10,19,25,41 for n>0,0,0,12,23,32,48
Empirical: rows n=1..7 are polynomials of degree 6*n for k>0,0,0,2,3,4,5
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..1....0..1..2..1....1..1..0..0....2..1..1..0....0..1..2..2
..1..1..2..0....3..2..2..0....2..3..3..3....1..3..3..0....1..3..3..3
..1..2..3..3....3..3..3..1....3..3..3..0....3..3..2..1....3..3..3..1
CROSSREFS
Column 1 is A000302
Column 2 is 16*10^(n-1)
Row 1 is A223659
Row 2 is A224058
Sequence in context: A224064 A224050 A224281 * A238287 A223811 A223762
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 01 2013
STATUS
approved