login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224096 Denominators of poly-Cauchy numbers c_n^(3). 4
1, 8, 216, 576, 108000, 14400, 14817600, 16934400, 571536000, 127008000, 101428588800, 18441561600, 709031939616000, 12120204096000, 6678479808000, 24932991283200, 229679599076928000, 818822100096000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)

Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.

Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.

T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.

Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016

MATHEMATICA

Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^3, {k, 0, n}]], {n, 0, 25}]

PROG

(PARI) a(n) = denominator(sum(k=0, n, stirling(n, k, 1)/(k+1)^3)); \\ Michel Marcus, Nov 15 2015

CROSSREFS

Cf. A006233, A222636, A224094, A224097 (numerators).

Sequence in context: A221042 A247032 A027646 * A224103 A072159 A016827

Adjacent sequences:  A224093 A224094 A224095 * A224097 A224098 A224099

KEYWORD

nonn,frac

AUTHOR

Takao Komatsu, Mar 31 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 06:12 EST 2022. Contains 350467 sequences. (Running on oeis4.)