login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222636
Poly-Cauchy numbers c_n^(-3).
4
1, 8, 19, -1, -10, 48, -234, 1302, -8328, 60672, -497688, 4547448, -45846864, 505862064, -6065584128, 78555965184, -1093053332736, 16264215348480, -257730606190080, 4333624828853760, -77067187081620480, 1445257352902763520, -28505367984508416000
OFFSET
0,2
COMMENTS
Definition of poly-Cauchy numbers in A222627.
LINKS
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146.
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*(k+1)^3.
E.g.f.: (1 + x) * (1 + 7 * log(1 + x) + 6 * log(1 + x)^2 + log(1 + x)^3). - Ilya Gutkovskiy, Aug 10 2021
MATHEMATICA
Table[Sum[StirlingS1[n, k] (k + 1)^3, {k, 0, n}], {n, 0, 25}]
PROG
(Magma) [&+[StirlingFirst(n, k)*(k+1)^3: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^3); \\ Michel Marcus, Nov 14 2015
CROSSREFS
Cf. A223901.
Sequence in context: A146299 A081968 A076096 * A283264 A294588 A259169
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 28 2013
STATUS
approved