login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223899
Poly-Cauchy numbers of the second kind hat c_n^(-2).
4
1, -4, 13, -51, 244, -1392, 9260, -70508, 605320, -5788008, 61021872, -703384272, 8801449344, -118828732032, 1721888828928, -26656798602240, 439110126743040, -7669109089082880, 141557837068938240, -2753560001544053760, 56299265625742848000
OFFSET
0,2
LINKS
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
FORMULA
E.g.f.: (1 - log(1 + x) * (3 - log(1 + x))) / (1 + x). - Ilya Gutkovskiy, Aug 09 2021
MATHEMATICA
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^2, {k, 0, n}], {n, 0, 30}]
PROG
(Magma) [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^2: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^2); \\ Michel Marcus, Nov 14 2015
CROSSREFS
Cf. A222627.
Sequence in context: A149462 A151488 A245156 * A357962 A097169 A149463
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 29 2013
STATUS
approved