login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1

%I #8 Aug 24 2018 03:58:54

%S 5,25,89,249,596,1286,2578,4886,8851,15439,26072,42800,68523,107273,

%T 164567,247843,366992,535000,768715,1089755,1525574,2110704,2888192,

%U 3911252,5245153,6969365,9179986,11992474,15544709,20000411,25552941

%N Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

%C Row 4 of A223838.

%H R. H. Hardin, <a href="/A223840/b223840.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (19/2880)*n^6 + (7/180)*n^5 + (527/5760)*n^4 + (3683/1440)*n^3 + (4051/10080)*n^2 - (1707/280)*n + 13 for n>2.

%F Conjectures from _Colin Barker_, Aug 24 2018: (Start)

%F G.f.: x*(5 - 20*x + 44*x^2 - 72*x^3 + 89*x^4 - 70*x^5 + 28*x^6 - 4*x^7 + 4*x^8 - 4*x^9 + x^10) / (1 - x)^9.

%F a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.

%F (End)

%e Some solutions for n=3:

%e ..0..0..0....0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..0

%e ..0..0..0....0..1..0....0..0..0....0..1..1....0..0..0....0..0..1....0..0..0

%e ..0..0..0....0..1..0....1..0..0....1..1..1....0..0..0....0..0..1....0..1..0

%e ..0..0..1....1..1..1....1..1..0....1..1..1....0..1..1....0..1..1....0..1..0

%Y Cf. A223838.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 27 2013