login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223840
Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
5, 25, 89, 249, 596, 1286, 2578, 4886, 8851, 15439, 26072, 42800, 68523, 107273, 164567, 247843, 366992, 535000, 768715, 1089755, 1525574, 2110704, 2888192, 3911252, 5245153, 6969365, 9179986, 11992474, 15544709, 20000411, 25552941
OFFSET
1,1
COMMENTS
Row 4 of A223838.
LINKS
FORMULA
Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (19/2880)*n^6 + (7/180)*n^5 + (527/5760)*n^4 + (3683/1440)*n^3 + (4051/10080)*n^2 - (1707/280)*n + 13 for n>2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(5 - 20*x + 44*x^2 - 72*x^3 + 89*x^4 - 70*x^5 + 28*x^6 - 4*x^7 + 4*x^8 - 4*x^9 + x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0....0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..1..0....0..0..0....0..1..1....0..0..0....0..0..1....0..0..0
..0..0..0....0..1..0....1..0..0....1..1..1....0..0..0....0..0..1....0..1..0
..0..0..1....1..1..1....1..1..0....1..1..1....0..1..1....0..1..1....0..1..0
CROSSREFS
Cf. A223838.
Sequence in context: A147274 A147034 A146460 * A083090 A224148 A265929
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 27 2013
STATUS
approved