login
A223682
Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal.
1
16, 256, 2032, 9822, 35509, 105995, 275775, 646407, 1395174, 2815594, 5372794, 9777124, 17079747, 28794301, 47049089, 74774613, 115931628, 175785252, 261231028, 381179194, 547003777, 773063487, 1077301747, 1481933555
OFFSET
1,1
COMMENTS
Row 4 of A223680.
LINKS
FORMULA
Empirical: a(n) = (1/112)*n^8 + (79/1260)*n^7 + (121/120)*n^6 + (71/36)*n^5 + (475/48)*n^4 - (1757/180)*n^3 + (8893/840)*n^2 - (569/84)*n + 9.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(16 + 112*x + 304*x^2 - 594*x^3 + 775*x^4 - 442*x^5 + 216*x^6 - 36*x^7 + 9*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
..1..1..0....0..0..1....1..0..0....0..0..0....0..1..1....1..1..0....0..1..0
..1..1..0....0..0..0....0..1..0....1..1..0....0..1..0....0..1..0....0..0..1
..0..1..1....0..0..0....1..0..0....0..1..1....0..0..0....1..1..0....1..1..1
..0..0..1....0..1..1....0..1..0....1..1..0....0..1..1....1..0..0....0..1..0
CROSSREFS
Cf. A223680.
Sequence in context: A188994 A208075 A223641 * A189066 A189191 A188876
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 25 2013
STATUS
approved