login
A223681
Number of 3 X n 0..1 arrays with rows and antidiagonals unimodal.
1
8, 64, 316, 1118, 3177, 7745, 16857, 33615, 62518, 109838, 184042, 296260, 460799, 695703, 1023359, 1471149, 2072148, 2865868, 3899048, 5226490, 6911941, 9029021, 11662197, 14907803, 18875106, 23687418, 29483254, 36417536, 44662843, 54410707
OFFSET
1,1
COMMENTS
Row 3 of A223680.
LINKS
FORMULA
Empirical: a(n) = (23/360)*n^6 + (31/120)*n^5 + (17/9)*n^4 + (23/24)*n^3 + (917/360)*n^2 + (77/60)*n + 1.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(8 + 8*x + 36*x^2 - 30*x^3 + 27*x^4 - 4*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..1..1..1....0..0..0....0..0..0....1..1..0....1..0..0....1..1..0....0..1..1
..0..1..0....0..1..0....0..1..1....0..0..1....0..1..0....0..1..0....1..1..0
..0..0..0....1..1..1....0..1..1....1..0..0....0..1..1....1..1..0....0..0..0
CROSSREFS
Cf. A223680.
Sequence in context: A188741 A188993 A355840 * A189065 A189190 A188875
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 25 2013
STATUS
approved