login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223670
Number of 3 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal.
1
8, 64, 292, 948, 2527, 5913, 12577, 24821, 46068, 81198, 136930, 222250, 348885, 531823, 789879, 1146307, 1629458, 2273484, 3119088, 4214320, 5615419, 7387701, 9606493, 12358113, 15740896, 19866266, 24859854, 30862662, 38032273, 46544107
OFFSET
1,1
COMMENTS
Row 3 of A223669.
LINKS
FORMULA
Empirical: a(n) = (23/360)*n^6 - (3/40)*n^5 + (37/18)*n^4 + (119/24)*n^3 - (3103/360)*n^2 + (997/60)*n - 9 for n>1.
Conjectures from Colin Barker, Mar 16 2018: (Start)
G.f.: x*(8 + 8*x + 12*x^2 - 32*x^3 + 63*x^4 - 16*x^5 + 5*x^6 - 2*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..1..1....0..1..1..0....0..0..1..1....0..0..0..1....1..0..0..0
..1..1..0..0....0..1..0..0....0..1..0..0....0..0..1..1....0..1..1..1
..0..0..0..0....0..1..1..0....1..0..0..0....0..1..1..0....0..0..0..0
CROSSREFS
Cf. A223669.
Sequence in context: A167239 A236554 A173502 * A189618 A189690 A188741
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 25 2013
STATUS
approved