login
A223670
Number of 3 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal.
1
8, 64, 292, 948, 2527, 5913, 12577, 24821, 46068, 81198, 136930, 222250, 348885, 531823, 789879, 1146307, 1629458, 2273484, 3119088, 4214320, 5615419, 7387701, 9606493, 12358113, 15740896, 19866266, 24859854, 30862662, 38032273, 46544107
OFFSET
1,1
COMMENTS
Row 3 of A223669.
LINKS
FORMULA
Empirical: a(n) = (23/360)*n^6 - (3/40)*n^5 + (37/18)*n^4 + (119/24)*n^3 - (3103/360)*n^2 + (997/60)*n - 9 for n>1.
Conjectures from Colin Barker, Mar 16 2018: (Start)
G.f.: x*(8 + 8*x + 12*x^2 - 32*x^3 + 63*x^4 - 16*x^5 + 5*x^6 - 2*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..1..1....0..1..1..0....0..0..1..1....0..0..0..1....1..0..0..0
..1..1..0..0....0..1..0..0....0..1..0..0....0..0..1..1....0..1..1..1
..0..0..0..0....0..1..1..0....1..0..0..0....0..1..1..0....0..0..0..0
CROSSREFS
Cf. A223669.
Sequence in context: A167239 A236554 A173502 * A189618 A189690 A188741
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 25 2013
STATUS
approved