OFFSET
1,1
COMMENTS
Table starts
....2.......4........7........11.........16..........22..........29..........37
....4......16.......49.......121........256.........484.........841........1369
....8......64......292.......948.......2527........5913.......12577.......24821
...16.....256.....1723......6454......18980.......49561......119150......267643
...32....1024....10327.....44693.....136289......364959......920106.....2218590
...64....4096....61996....321163....1023339.....2715255.....6789502....16634224
..128...16384...371641...2343189....8052573....21347949....51831694...124050234
..256...65536..2227333..17087771...64796052...176196273...418107416...962697852
..512..262144.13350748.124218846..523162622..1493319998..3535212700..7863420454
.1024.1048576.80027347.901767902.4210122961.12752674920.30760010124.67121292946
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..179
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 6*a(n-1) -2*a(n-2) +11*a(n-3) +10*a(n-4) -30*a(n-5) -12*a(n-6)
k=4: [order 23]
k=5: [order 93]
Empirical for row n:
n=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
n=2: a(n) = (1/4)*n^4 + (1/2)*n^3 + (5/4)*n^2 + 1*n + 1
n=3: a(n) = polynomial of degree 6 for n>1
n=4: a(n) = polynomial of degree 8 for n>6
n=5: a(n) = polynomial of degree 10 for n>12
n=6: a(n) = polynomial of degree 12 for n>20
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1....0..0..1..0....0..1..1..0....0..1..0..0....0..0..0..0
..0..1..1..0....1..1..1..1....1..1..1..0....0..1..1..0....0..0..0..0
..1..1..1..0....0..1..1..1....1..1..1..1....0..1..1..0....0..0..0..0
..0..0..0..0....0..0..1..0....1..1..1..0....0..0..0..1....1..1..1..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 25 2013
STATUS
approved