login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX2 0..3 arrays with row sums unimodal and column sums inverted unimodal
2

%I #14 Nov 02 2024 04:06:45

%S 16,256,3060,29922,252912,1912914,13254601,85563043,521069404,

%T 3022541224,16826714534,90449485556,471770734372,2397374836954,

%U 11909366979539,57999389713133,277578926336176,1308191004875392,6081976574677816,27936365857925926,126946765412455656

%N Number of nX2 0..3 arrays with row sums unimodal and column sums inverted unimodal

%H R. H. Hardin, <a href="/A223660/b223660.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 31*a(n-1) -437*a(n-2) +3707*a(n-3) -21099*a(n-4) +85029*a(n-5) -249431*a(n-6) +538841*a(n-7) -856504*a(n-8) +988504*a(n-9) -804432*a(n-10) +436752*a(n-11) -141696*a(n-12) +20736*a(n-13).

%F Empirical g.f.: -x*( 16 -240*x +2116*x^2 -12378*x^3 +51142*x^4 -153984*x^5 +342369*x^6 -562536*x^7 +675688*x^8 -578496*x^9 +336528*x^10 -120960*x^11 +20736*x^12) / ( (-1+4*x)^2 *(x-1)^3 *(3*x-1)^4 *(2*x-1)^4 ). - _R. J. Mathar_, May 17 2014

%e Some solutions for n=3:

%e ..3..3....3..2....0..0....0..0....3..1....1..0....1..0....2..0....1..3....3..1

%e ..1..3....2..2....1..3....0..1....0..2....2..1....3..1....0..2....2..3....0..3

%e ..1..1....0..3....3..0....2..0....2..0....0..3....1..2....3..0....1..0....1..0

%Y Column 2 of A223663.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 25 2013