login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223660
Number of nX2 0..3 arrays with row sums unimodal and column sums inverted unimodal
2
16, 256, 3060, 29922, 252912, 1912914, 13254601, 85563043, 521069404, 3022541224, 16826714534, 90449485556, 471770734372, 2397374836954, 11909366979539, 57999389713133, 277578926336176, 1308191004875392, 6081976574677816, 27936365857925926, 126946765412455656
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 31*a(n-1) -437*a(n-2) +3707*a(n-3) -21099*a(n-4) +85029*a(n-5) -249431*a(n-6) +538841*a(n-7) -856504*a(n-8) +988504*a(n-9) -804432*a(n-10) +436752*a(n-11) -141696*a(n-12) +20736*a(n-13).
Empirical g.f.: -x*( 16 -240*x +2116*x^2 -12378*x^3 +51142*x^4 -153984*x^5 +342369*x^6 -562536*x^7 +675688*x^8 -578496*x^9 +336528*x^10 -120960*x^11 +20736*x^12) / ( (-1+4*x)^2 *(x-1)^3 *(3*x-1)^4 *(2*x-1)^4 ). - R. J. Mathar, May 17 2014
EXAMPLE
Some solutions for n=3:
..3..3....3..2....0..0....0..0....3..1....1..0....1..0....2..0....1..3....3..1
..1..3....2..2....1..3....0..1....0..2....2..1....3..1....0..2....2..3....0..3
..1..1....0..3....3..0....2..0....2..0....0..3....1..2....3..0....1..0....1..0
CROSSREFS
Column 2 of A223663.
Sequence in context: A174335 A297377 A283860 * A223565 A223677 A207277
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 25 2013
STATUS
approved