login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223576
T(n,k)=Number of nXk 0..2 arrays with antidiagonals unimodal
7
3, 9, 9, 27, 81, 27, 81, 729, 729, 81, 243, 6561, 16038, 6561, 243, 729, 59049, 352836, 352836, 59049, 729, 2187, 531441, 7762392, 16230456, 7762392, 531441, 2187, 6561, 4782969, 170772624, 746600976, 746600976, 170772624, 4782969, 6561, 19683
OFFSET
1,1
COMMENTS
Table starts
.....3..........9.............27.................81...................243
.....9.........81............729...............6561.................59049
....27........729..........16038.............352836...............7762392
....81.......6561.........352836...........16230456.............746600976
...243......59049........7762392..........746600976...........64207683936
...729.....531441......170772624........34343644896.........5521860818496
..2187....4782969.....3756997728......1579807665216.......474880030390656
..6561...43046721....82653950016.....72671152599936.....40839682613596416
.19683..387420489..1818386900352...3342873019597056...3512212704769291776
.59049.3486784401.40004511807744.153772158901464576.302050292610159092736
LINKS
FORMULA
Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24
T(n,k) = U(min(n,k))^(max(n,k)-min(n,k)+1) * product{ U(i)^2 , i=1..(min(n,k)-1) }
EXAMPLE
Some solutions for n=3 k=4
..0..1..2..2....0..2..0..1....0..1..2..2....0..0..1..2....0..1..0..2
..0..1..2..2....1..1..2..0....1..1..0..1....1..2..1..2....0..2..1..0
..1..2..1..1....1..2..0..1....1..0..2..2....1..0..2..0....0..1..0..0
CROSSREFS
Column 1 is A000244
Column 2 is A001019
Sequence in context: A268026 A268019 A228977 * A125824 A203558 A223653
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 22 2013
STATUS
approved