login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223576 T(n,k)=Number of nXk 0..2 arrays with antidiagonals unimodal 7

%I

%S 3,9,9,27,81,27,81,729,729,81,243,6561,16038,6561,243,729,59049,

%T 352836,352836,59049,729,2187,531441,7762392,16230456,7762392,531441,

%U 2187,6561,4782969,170772624,746600976,746600976,170772624,4782969,6561,19683

%N T(n,k)=Number of nXk 0..2 arrays with antidiagonals unimodal

%C Table starts

%C .....3..........9.............27.................81...................243

%C .....9.........81............729...............6561.................59049

%C ....27........729..........16038.............352836...............7762392

%C ....81.......6561.........352836...........16230456.............746600976

%C ...243......59049........7762392..........746600976...........64207683936

%C ...729.....531441......170772624........34343644896.........5521860818496

%C ..2187....4782969.....3756997728......1579807665216.......474880030390656

%C ..6561...43046721....82653950016.....72671152599936.....40839682613596416

%C .19683..387420489..1818386900352...3342873019597056...3512212704769291776

%C .59049.3486784401.40004511807744.153772158901464576.302050292610159092736

%H R. H. Hardin, <a href="/A223576/b223576.txt">Table of n, a(n) for n = 1..1000</a>

%F Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24

%F T(n,k) = U(min(n,k))^(max(n,k)-min(n,k)+1) * product{ U(i)^2 , i=1..(min(n,k)-1) }

%e Some solutions for n=3 k=4

%e ..0..1..2..2....0..2..0..1....0..1..2..2....0..0..1..2....0..1..0..2

%e ..0..1..2..2....1..1..2..0....1..1..0..1....1..2..1..2....0..2..1..0

%e ..1..2..1..1....1..2..0..1....1..0..2..2....1..0..2..0....0..1..0..0

%Y Column 1 is A000244

%Y Column 2 is A001019

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Mar 22 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 16:20 EDT 2021. Contains 348215 sequences. (Running on oeis4.)