login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223552
Petersen graph (3,1) coloring a rectangular array: number of n X 4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
1
27, 1089, 44217, 1795473, 72906921, 2960456193, 120212193177, 4881332621169, 198211242377097, 8048559615522273, 326819564358379641, 13270825184845208913, 538874719548919491177, 21881530298548175795649
OFFSET
1,1
COMMENTS
Column 4 of A223556.
LINKS
FORMULA
Empirical: a(n) = 41*a(n-1) - 16*a(n-2).
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: 9*x*(3 - 2*x) / (1 - 41*x + 16*x^2).
a(n) = 3*sqrt(3/11)*2^(-4-n)*((41-7*sqrt(33))^n*(-1+sqrt(33)) + (1+sqrt(33))*(41+7*sqrt(33))^n).
(End)
EXAMPLE
Some solutions for n=3:
..0..2..0..2....0..1..2..5....0..2..0..2....0..2..1..4....0..1..0..1
..0..1..0..2....2..1..4..5....1..2..0..2....5..4..5..2....2..1..2..1
..4..1..0..2....4..3..4..5....5..3..5..4....5..2..1..0....4..1..4..3
CROSSREFS
Cf. A223556.
Sequence in context: A222440 A159457 A290946 * A357228 A104206 A327596
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 22 2013
STATUS
approved