login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least prime p such that 2*n*p is a sum of 10^6 subsequent primes.
0

%I #14 Nov 02 2024 03:21:50

%S 3736971300983,1868582442157,1245659681423,934275734321,747425233469,

%T 622762733249,534156162737,467093343419,415824854441,373728877943,

%U 339743670103,311538175027,287741107327,266994001331,249114901193,233613943273,219815919913,208214150917

%N Least prime p such that 2*n*p is a sum of 10^6 subsequent primes.

%C Indices of first primes are: 64, 89, 65, 81, 84, 13, 338, 35, 768, 105, 91, 256, 537, 186, 32, 174, 51, 1469, 519, 277, 2132, 232, 241, 310, 179, 744, 1835, 535, 787, 167, 664, 1538, 1253, 484, 620, 1450, 961, 649, 1472, 166, 480, 918, 107, 418, 173, 370, 871, 1967, 71, 534.

%C First primes are: 311, 461, 313, 419, 433, 41, 2273, 149, 5849, 571, 467, 1619, 3877, 1109, 131, 1033, 233, 12281, 3719, 1787, 18671, 1459, 1523, 2053, 1063, 5653, 15737, 3853, 6037, 991, 4967, 12917, 10211, 3461, 4583, 12109, 7573, 4817, 12323, 983, 3413, 7187, 587, 2887, 1031, 2531, 6763, 17047, 353, 3851.

%e a(1) = 3736971300983 = (p(64)+...+p(1000063))/2 = (311 + ... + 15486871)/2.

%e a(2) = 1868582442157 = (p(89)+...+p(1000088))/4 = (461 + ... + 15487253)/4.

%t Do[s = 7472966967499 ; a = 2; b = 15485863; Do[s = s - a + (b = NextPrime[b]); a = NextPrime[a]; If[PrimeQ[s/m] , Print[{m, k, a, b, s/m}]; Break[]], {k, 2, 10^6}], {m, 2, 100, 2}]

%Y Cf. A099824, A123086.

%K nonn

%O 1,1

%A _Zak Seidov_, Feb 25 2013