login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222558
Least prime p such that 2*n*p is a sum of 10^6 subsequent primes.
0
3736971300983, 1868582442157, 1245659681423, 934275734321, 747425233469, 622762733249, 534156162737, 467093343419, 415824854441, 373728877943, 339743670103, 311538175027, 287741107327, 266994001331, 249114901193, 233613943273, 219815919913, 208214150917
OFFSET
1,1
COMMENTS
Indices of first primes are: 64, 89, 65, 81, 84, 13, 338, 35, 768, 105, 91, 256, 537, 186, 32, 174, 51, 1469, 519, 277, 2132, 232, 241, 310, 179, 744, 1835, 535, 787, 167, 664, 1538, 1253, 484, 620, 1450, 961, 649, 1472, 166, 480, 918, 107, 418, 173, 370, 871, 1967, 71, 534.
First primes are: 311, 461, 313, 419, 433, 41, 2273, 149, 5849, 571, 467, 1619, 3877, 1109, 131, 1033, 233, 12281, 3719, 1787, 18671, 1459, 1523, 2053, 1063, 5653, 15737, 3853, 6037, 991, 4967, 12917, 10211, 3461, 4583, 12109, 7573, 4817, 12323, 983, 3413, 7187, 587, 2887, 1031, 2531, 6763, 17047, 353, 3851.
EXAMPLE
a(1) = 3736971300983 = (p(64)+...+p(1000063))/2 = (311 + ... + 15486871)/2.
a(2) = 1868582442157 = (p(89)+...+p(1000088))/4 = (461 + ... + 15487253)/4.
MATHEMATICA
Do[s = 7472966967499 ; a = 2; b = 15485863; Do[s = s - a + (b = NextPrime[b]); a = NextPrime[a]; If[PrimeQ[s/m] , Print[{m, k, a, b, s/m}]; Break[]], {k, 2, 10^6}], {m, 2, 100, 2}]
CROSSREFS
Sequence in context: A209834 A230485 A172646 * A290504 A172630 A186912
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 25 2013
STATUS
approved