login
A222201
Write n=3i+j, 0<=j<3; a(n) = number of Hamiltonian cycles on square grid of points of size 2i+2 X 2i+2 (if j=0), 2i+2 X 2i+3 (j=1) or 2i+3 X 2i+4 (j=2).
1
1, 1, 2, 6, 14, 154, 1072, 5320, 301384, 4638576, 49483138, 13916993782, 467260456608, 10754797724124, 14746957510647992, 1076226888605605706, 53540340738182687296, 354282765498796010420944, 56126499620491437281263608, 6040964455632840415885507728, 191678405883294971709423926242394, 65882516522625836326159786165530572
OFFSET
0,3
COMMENTS
An interleaving of A003763 and A222200.
LINKS
Peter Tittman, Illustration of a(4) = 14 [Taken from preceding link]
Peter Tittmann, Enumeration in graphs: counting Hamiltonian cycles [Backup copy of top page only, on the Internet Archive]
CROSSREFS
Sequence in context: A296054 A333121 A131518 * A130642 A376406 A133933
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 14 2013
STATUS
approved