login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222201
Write n=3i+j, 0<=j<3; a(n) = number of Hamiltonian cycles on square grid of points of size 2i+2 X 2i+2 (if j=0), 2i+2 X 2i+3 (j=1) or 2i+3 X 2i+4 (j=2).
1
1, 1, 2, 6, 14, 154, 1072, 5320, 301384, 4638576, 49483138, 13916993782, 467260456608, 10754797724124, 14746957510647992, 1076226888605605706, 53540340738182687296, 354282765498796010420944, 56126499620491437281263608, 6040964455632840415885507728, 191678405883294971709423926242394, 65882516522625836326159786165530572
OFFSET
0,3
COMMENTS
An interleaving of A003763 and A222200.
LINKS
Peter Tittman, Illustration of a(4) = 14 [Taken from preceding link]
Peter Tittmann, Enumeration in graphs: counting Hamiltonian cycles [Backup copy of top page only, on the Internet Archive]
CROSSREFS
Sequence in context: A296054 A333121 A131518 * A130642 A376406 A133933
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 14 2013
STATUS
approved