login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130642
Numbers n such that 1 + Sum{k=1..n/2}A001223(2k-1)*(-1)^k = 0.
4
2, 6, 14, 190, 194, 200, 306, 462, 468, 474, 478, 490, 560, 1208, 1890, 1938, 23716, 23850, 25226, 25834, 25968, 26642, 26650, 26998, 48316, 311888, 311922, 313946, 331540, 331762, 331782, 377078, 377518, 377666, 377674, 377748, 378422, 378428
OFFSET
1,1
COMMENTS
Sequence has 170 terms < 10^8.
Being prime(n) = 1 + Sum{k=1..n-1}A000040(k)*(-1)^Floor(k/2), for n/2 odd and, prime(n) = (1 + Sum{k=1..n- 1}A000040(k)*(-1)^Floor(k/2))*(-1), for n/2 even.
EXAMPLE
1 + ( -A001223(1)) = 1+(-1) = 0, hence 2 is a term.
1 + ( -A001223(1) + A001223(3) - A001223(5)) = 1+(-1+2-2) = 0, hence 6 is a term.
MATHEMATICA
S=0; a=0; Do[S=S+(Prime[2*k]-Prime[2*k-1])*(-1)^k; If[1+S==0, a++; Print[a, " ", 2*k]], {k, 1, 10^8, 1}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Manuel Valdivia, Jun 20 2007
STATUS
approved