The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130642 Numbers n such that 1 + Sum{k=1..n/2}A001223(2k-1)*(-1)^k = 0. 4
 2, 6, 14, 190, 194, 200, 306, 462, 468, 474, 478, 490, 560, 1208, 1890, 1938, 23716, 23850, 25226, 25834, 25968, 26642, 26650, 26998, 48316, 311888, 311922, 313946, 331540, 331762, 331782, 377078, 377518, 377666, 377674, 377748, 378422, 378428 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Sequence has 170 terms < 10^8. Being prime(n) = 1 + Sum{k=1..n-1}A000040(k)*(-1)^Floor(k/2), for n/2 odd and, prime(n) = (1 + Sum{k=1..n- 1}A000040(k)*(-1)^Floor(k/2))*(-1), for n/2 even. LINKS Table of n, a(n) for n=1..38. EXAMPLE 1 + ( -A001223(1)) = 1+(-1) = 0, hence 2 is a term. 1 + ( -A001223(1) + A001223(3) - A001223(5)) = 1+(-1+2-2) = 0, hence 6 is a term. MATHEMATICA S=0; a=0; Do[S=S+(Prime[2*k]-Prime[2*k-1])*(-1)^k; If[1+S==0, a++; Print[a, " ", 2*k]], {k, 1, 10^8, 1}] CROSSREFS Cf. A127596, A128039, A001223, A000101, A002386. Sequence in context: A333121 A131518 A222201 * A133933 A297574 A349984 Adjacent sequences: A130639 A130640 A130641 * A130643 A130644 A130645 KEYWORD nonn AUTHOR Manuel Valdivia, Jun 20 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 09:23 EDT 2024. Contains 372786 sequences. (Running on oeis4.)