login
Primes of the form 2^p - p^2, where p is prime.
0

%I #9 Feb 11 2013 17:10:24

%S 7,79,130783,523927,9007199254738183,9671406556917033397642519,

%T 215679573337205118357336120696157045389097155380324579848828881942199

%N Primes of the form 2^p - p^2, where p is prime.

%C Subsequence of A075896 (primes of the form 2^n - n^2).

%C Primes of the form 2^p - p^2 (p = prime) for p = 5, 7, 17, 19, 53, 83, 227, 461, 2221,... (all p <= 2455).

%C a(8) = 59542628... has 139 digits.

%C a(9) = 2^2221 - 2221^2 has 669 digits.

%e 130783 is in the sequence because it is prime and it is of the form 2^p - p^2 where p=17 is prime.

%t lst={}; Do[p=Prime[n]; If[PrimeQ[p=2^p-p^2], AppendTo[lst, p]], {n, 100}]; lst

%Y Cf. A075896.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Feb 08 2013