login
A222137
Primes of the form 2^p - p^2, where p is prime.
0
7, 79, 130783, 523927, 9007199254738183, 9671406556917033397642519, 215679573337205118357336120696157045389097155380324579848828881942199
OFFSET
1,1
COMMENTS
Subsequence of A075896 (primes of the form 2^n - n^2).
Primes of the form 2^p - p^2 (p = prime) for p = 5, 7, 17, 19, 53, 83, 227, 461, 2221,... (all p <= 2455).
a(8) = 59542628... has 139 digits.
a(9) = 2^2221 - 2221^2 has 669 digits.
EXAMPLE
130783 is in the sequence because it is prime and it is of the form 2^p - p^2 where p=17 is prime.
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p=2^p-p^2], AppendTo[lst, p]], {n, 100}]; lst
CROSSREFS
Cf. A075896.
Sequence in context: A331424 A052385 A093947 * A115986 A295843 A085606
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Feb 08 2013
STATUS
approved