Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jan 21 2013 12:55:55
%S 0,0,1,0,2,1,0,3,4,2,0,4,9,12,3,0,5,16,36,32,5,0,6,25,80,135,88,8,0,7,
%T 36,150,384,513,240,13,0,8,49,252,875,1856,1944,656,21,0,9,64,392,
%U 1728,5125,8960,7371,1792,34,0,10,81,576,3087,11880,30000,43264,27945,4896,55,0,11
%N T(n,k)=Number of 0..k arrays of length n with each element unequal to at least one neighbor, starting with 0
%C Table starts
%C ..0.....0.......0........0.........0..........0..........0...........0
%C ..1.....2.......3........4.........5..........6..........7...........8
%C ..1.....4.......9.......16........25.........36.........49..........64
%C ..2....12......36.......80.......150........252........392.........576
%C ..3....32.....135......384.......875.......1728.......3087........5120
%C ..5....88.....513.....1856......5125......11880......24353.......45568
%C ..8...240....1944.....8960.....30000......81648.....192080......405504
%C .13...656....7371....43264....175625.....561168....1515031.....3608576
%C .21..1792...27945...208896...1028125....3856896...11949777....32112640
%C .34..4896..105948..1008640...6018750...26508384...94253656...285769728
%C .55.13376..401679..4870144..35234375..182191680..743424031..2543058944
%C .89.36544.1522881.23515136.206265625.1252200384.5863743809.22630629376
%H R. H. Hardin, <a href="/A221463/b221463.txt">Table of n, a(n) for n = 1..10000</a>
%F Recursion for column k:
%F k=1: a(n) = a(n-1) +a(n-2)
%F k=2: a(n) = 2*a(n-1) +2*a(n-2)
%F k=3: a(n) = 3*a(n-1) +3*a(n-2)
%F k=4: a(n) = 4*a(n-1) +4*a(n-2)
%F k=5: a(n) = 5*a(n-1) +5*a(n-2)
%F k=6: a(n) = 6*a(n-1) +6*a(n-2)
%F k=7: a(n) = 7*a(n-1) +7*a(n-2)
%F Empirical for row n:
%F n=2: a(k) = 1*k
%F n=3: a(k) = 1*k^2
%F n=4: a(k) = 1*k^3 + 1*k^2
%F n=5: a(k) = 1*k^4 + 2*k^3
%F n=6: a(k) = 1*k^5 + 3*k^4 + 1*k^3
%F n=7: a(k) = 1*k^6 + 4*k^5 + 3*k^4
%F n=8: a(k) = 1*k^7 + 5*k^6 + 6*k^5 + 1*k^4
%F n=9: a(k) = 1*k^8 + 6*k^7 + 10*k^6 + 4*k^5
%F n=10: a(k) = 1*k^9 + 7*k^8 + 15*k^7 + 10*k^6 + 1*k^5
%F n=11: a(k) = 1*k^10 + 8*k^9 + 21*k^8 + 20*k^7 + 5*k^6
%F n=12: a(k) = 1*k^11 + 9*k^10 + 28*k^9 + 35*k^8 + 15*k^7 + 1*k^6
%F n=13: a(k) = 1*k^12 + 10*k^11 + 36*k^10 + 56*k^9 + 35*k^8 + 6*k^7
%F n=14: a(k) = 1*k^13 + 11*k^12 + 45*k^11 + 84*k^10 + 70*k^9 + 21*k^8 + 1*k^7
%F n=15: a(k) = 1*k^14 + 12*k^13 + 55*k^12 + 120*k^11 + 126*k^10 + 56*k^9 + 7*k^8
%F Apparently then T(n,k) = sum { binomial(n-2-i,i)*k^(n-1-i) , 0<=2*i<=n-2 }.
%F The formula reduces to T(n,k) = [4*k^(n-1)*(1+G)^(2*n-2) +4^n] /[2^(n+1) *G *(1+G)^(n-1)] for even n and to T(n,k) = [4*k^(n-1) *(1+G)^(2*n-2) -4^n] /[2^(n+1) *G *(1+G)^(n-1)] for odd n, where G=sqrt(1+4/k). - _R. J. Mathar_, Jan 21 2013
%e Some solutions for n=6 k=4
%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e ..4....2....1....3....3....2....2....1....4....2....3....1....3....2....3....3
%e ..1....4....0....1....2....4....3....0....2....0....3....3....2....0....0....4
%e ..0....0....3....4....2....3....2....1....0....3....2....4....3....3....4....1
%e ..1....2....1....2....1....0....3....4....0....1....3....1....3....0....2....0
%e ..0....3....2....3....3....1....4....0....4....2....0....0....0....4....0....3
%Y Column 1 is A000045(n-1)
%Y Column 2 is A028860(n+1)
%Y Column 3 is A106435(n-1)
%Y Column 4 is A094013
%Y Column 5 is A106565(n-1)
%Y Row 2 is A000027
%Y Row 3 is A000290
%Y Row 4 is A011379
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, general recursion proved by _Robert Israel_ in the Sequence Fans Mailing List, Jan 17 2013