OFFSET
1,5
COMMENTS
Table starts
..0.....0.......0........0.........0..........0..........0...........0
..1.....2.......3........4.........5..........6..........7...........8
..1.....4.......9.......16........25.........36.........49..........64
..2....12......36.......80.......150........252........392.........576
..3....32.....135......384.......875.......1728.......3087........5120
..5....88.....513.....1856......5125......11880......24353.......45568
..8...240....1944.....8960.....30000......81648.....192080......405504
.13...656....7371....43264....175625.....561168....1515031.....3608576
.21..1792...27945...208896...1028125....3856896...11949777....32112640
.34..4896..105948..1008640...6018750...26508384...94253656...285769728
.55.13376..401679..4870144..35234375..182191680..743424031..2543058944
.89.36544.1522881.23515136.206265625.1252200384.5863743809.22630629376
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..10000
FORMULA
Recursion for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2)
k=3: a(n) = 3*a(n-1) +3*a(n-2)
k=4: a(n) = 4*a(n-1) +4*a(n-2)
k=5: a(n) = 5*a(n-1) +5*a(n-2)
k=6: a(n) = 6*a(n-1) +6*a(n-2)
k=7: a(n) = 7*a(n-1) +7*a(n-2)
Empirical for row n:
n=2: a(k) = 1*k
n=3: a(k) = 1*k^2
n=4: a(k) = 1*k^3 + 1*k^2
n=5: a(k) = 1*k^4 + 2*k^3
n=6: a(k) = 1*k^5 + 3*k^4 + 1*k^3
n=7: a(k) = 1*k^6 + 4*k^5 + 3*k^4
n=8: a(k) = 1*k^7 + 5*k^6 + 6*k^5 + 1*k^4
n=9: a(k) = 1*k^8 + 6*k^7 + 10*k^6 + 4*k^5
n=10: a(k) = 1*k^9 + 7*k^8 + 15*k^7 + 10*k^6 + 1*k^5
n=11: a(k) = 1*k^10 + 8*k^9 + 21*k^8 + 20*k^7 + 5*k^6
n=12: a(k) = 1*k^11 + 9*k^10 + 28*k^9 + 35*k^8 + 15*k^7 + 1*k^6
n=13: a(k) = 1*k^12 + 10*k^11 + 36*k^10 + 56*k^9 + 35*k^8 + 6*k^7
n=14: a(k) = 1*k^13 + 11*k^12 + 45*k^11 + 84*k^10 + 70*k^9 + 21*k^8 + 1*k^7
n=15: a(k) = 1*k^14 + 12*k^13 + 55*k^12 + 120*k^11 + 126*k^10 + 56*k^9 + 7*k^8
Apparently then T(n,k) = sum { binomial(n-2-i,i)*k^(n-1-i) , 0<=2*i<=n-2 }.
The formula reduces to T(n,k) = [4*k^(n-1)*(1+G)^(2*n-2) +4^n] /[2^(n+1) *G *(1+G)^(n-1)] for even n and to T(n,k) = [4*k^(n-1) *(1+G)^(2*n-2) -4^n] /[2^(n+1) *G *(1+G)^(n-1)] for odd n, where G=sqrt(1+4/k). - R. J. Mathar, Jan 21 2013
EXAMPLE
Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....2....1....3....3....2....2....1....4....2....3....1....3....2....3....3
..1....4....0....1....2....4....3....0....2....0....3....3....2....0....0....4
..0....0....3....4....2....3....2....1....0....3....2....4....3....3....4....1
..1....2....1....2....1....0....3....4....0....1....3....1....3....0....2....0
..0....3....2....3....3....1....4....0....4....2....0....0....0....4....0....3
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, general recursion proved by Robert Israel in the Sequence Fans Mailing List, Jan 17 2013
STATUS
approved