login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221286
Vsemirnov's sequence.
8
106276436867, 35256392432, 141532829299, 176789221731, 318322051030, 495111272761, 813433323791, 1308544596552, 2121977920343, 3430522516895, 5552500437238, 8983022954133, 14535523391371, 23518546345504, 38054069736875, 61572616082379, 99626685819254, 161199301901633, 260825987720887, 422025289622520
OFFSET
0,1
COMMENTS
A primefree linear recurrence with no common factors. As of 2004 no such sequences with smaller starting terms were known.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..4733 (terms 0..1000 from Alois P. Heinz)
Arturas Dubickas, Aivaras Novikas, and Jonas Šiurys, A binary linear recurrence sequence of composite numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1737-1749.
D. Ismailescu and J. Son, A New Kind of Fibonacci-Like Sequence of Composite Numbers, J. Int. Seq. 17 (2014) # 14.8.2.
Maxim Vsemirnov, A new Fibonacci-like sequence of composite numbers, Journal of Integer Sequences 7:3 (2004).
FORMULA
a(n) = a(n-1) + a(n-2).
G.f.: (106276436867-71020044435*x)/(1-x-x^2).
MAPLE
a:= n-> (<<0|1>, <1|1>>^n. <<106276436867, 35256392432>>)[1, 1]:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 04 2013
MATHEMATICA
LinearRecurrence[{1, 1}, {106276436867, 35256392432}, 20] (* Alonso del Arte, Feb 05 2013 *)
PROG
(PARI) Vec((106276436867-71020044435*x)/(1-x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Dec 09 2014
CROSSREFS
Other primefree linear recurrences: A083104 (Graham 1964), A082411 (Nicol 1999), A083105 (Knuth 1990), A083216 (Wilf 1990).
Sequence in context: A168340 A104799 A344751 * A074337 A072143 A233495
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset corrected by Alois P. Heinz, Apr 04 2013
STATUS
approved