The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221155 The generalized Fibonacci words q_n^[4]. 4
 1, 1313, 13133, 131331313, 13133131331311, 13133131331311313113131, 1313313133131131311313113133131331311, 131331313313113131131311313313133131131311313113133131331313 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Lars Blomberg, Table of n, a(n) for n = 0..12 José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012. MATHEMATICA bar[a_List] := a /. {1 -> 3, 3 -> 1}; q[0, _] = {}; q[1, _] = {1}; q[2, i_] := If[EvenQ[i], Table[{1, 3}, {i/2}], Append[Table[{1, 3}, {(i-1)/2}], 1]] // Flatten; q[n_, i_] := q[n, i] = If[EvenQ[i], If[Mod[n, 3] == 1, Join[q[n-1, i], q[n-2, i]], Join[q[n-1, i], q[n-2, i] // bar]], If[Mod[n, 3] == 0, Join[q[n-1, i], q[n-2, i]], Join[q[n-1, i], q[n-2, i] // bar]]]; a[n_] := q[n+1, 4] // FromDigits; Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Oct 02 2018 *) CROSSREFS Cf. A221153, A221154, A221155, A221156. Sequence in context: A223612 A223413 A333407 * A237393 A242151 A260765 Adjacent sequences:  A221152 A221153 A221154 * A221156 A221157 A221158 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 04 2013 EXTENSIONS a(5)-a(7) from Lars Blomberg, Sep 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)