The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220815 The elements of the set P7 in ascending order. 3
2, 3, 5, 11, 13, 17, 19, 23, 31, 37, 41, 47, 53, 61, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 131, 137, 139, 149, 151, 157, 163, 167, 179, 181, 191, 193, 199, 223, 229, 241, 251, 257, 263, 269, 271, 277, 283, 293, 307, 311 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
P7 is the largest set of primes satisfying the conditions: (1) 7 is not in P7; (2) a prime p>7 is in P7 iff all prime divisors of p-1 are in P7.
P7 is also the set of all primes p for which the Pratt tree for p has no node labeled 7.
It is conjectured that this sequence is infinite.
LINKS
K. Ford, S. Konyagin and F. Luca, Prime chains and Pratt trees, arXiv:0904.0473 [math.NT], 2009-2010; Geom. Funct. Anal., 20 (2010), pp. 1231-1258.
Kevin Ford, Sieving by very thin sets of primes, and Pratt trees with missing primes, arXiv preprint arXiv:1212.3498 [math.NT], 2012-2013.
FORMULA
Ford proves that a(n) >> n^k for some k > 1. - Charles R Greathouse IV, Dec 26 2012
EXAMPLE
11 is in P7, because 11-1 = 2*5 and 2, 5 are in P7.
MATHEMATICA
P7 = {2}; For[p = 2, p < 1000, p = NextPrime[p], If[p != 7 && AllTrue[ FactorInteger[p - 1][[All, 1]], MemberQ[P7, #] &], AppendTo[P7, p]]];
P7 (* Jean-François Alcover, Jan 05 2019 *)
PROG
(PARI) P(k, n)=if(n<=k, n<k, my(f=factor(n-1)[, 1]); for(i=1, #f, if(!P(k, f[i]), return(0))); 1)
is(n)=isprime(n) && P(7, n) \\ Charles R Greathouse IV, Dec 26 2012
CROSSREFS
Sequence in context: A040062 A115653 A042997 * A171600 A126148 A264866
KEYWORD
nonn
AUTHOR
Franz Vrabec, Dec 22 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 13:39 EDT 2024. Contains 373331 sequences. (Running on oeis4.)