login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220777 Number A(n,k) of tilings of a k X n rectangle using integer sided rectangular tiles of equal area; square array A(n,k), n>=0, k>=0, read by antidiagonals. 11
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 2, 9, 4, 9, 2, 1, 1, 4, 11, 20, 20, 11, 4, 1, 1, 2, 21, 7, 49, 7, 21, 2, 1, 1, 4, 24, 54, 115, 115, 54, 24, 4, 1, 1, 3, 43, 12, 343, 4, 343, 12, 43, 3, 1, 1, 4, 62, 190, 850, 1225, 1225, 850, 190, 62, 4, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Alois P. Heinz, Antidiagonals n = 0..26, flattened

EXAMPLE

A(3,5) = 7, because there are 7 tilings of a 5 X 3 rectangle using integer sided rectangular tiles of equal area:

._____. ._____. ._____. ._____. ._____. ._____. ._____.

|     | | | | | |_____| |_____| |_____| | | | | |_|_|_|

|     | | | | | |_____| |_____| | | | | | | | | |_|_|_|

|     | | | | | |_____| | | | | | | | | |_|_|_| |_|_|_|

|     | | | | | |_____| | | | | |_|_|_| |_____| |_|_|_|

|_____| |_|_|_| |_____| |_|_|_| |_____| |_____| |_|_|_|

Square array A(n,k) begins:

1,  1,  1,   1,    1,     1,      1,       1,        1, ...

1,  1,  2,   2,    3,     2,      4,       2,        4, ...

1,  2,  4,   6,    9,    11,     21,      24,       43, ...

1,  2,  6,   4,   20,     7,     54,      12,      190, ...

1,  3,  9,  20,   49,   115,    343,     850,     2401, ...

1,  2, 11,   7,  115,     4,   1225,       7,    15242, ...

1,  4, 21,  54,  343,  1225,   7104,   31777,   169952, ...

1,  2, 24,  12,  850,     7,  31777,       4,  1300180, ...

1,  4, 43, 190, 2401, 15242, 169952, 1300180, 13036591, ...

MAPLE

b:= proc(n, l, d) option remember; local i, k, m, q, s, t;

      if max(l[])>n then 0 elif n=0 or l=[] then 1

    elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), d)

    else for k do if l[k]=0 then break fi od; s, m:=0, nops(l);

         for i from k to m while l[i]=0 do if irem(d, 1+i-k, 'q')=0

           and q<=n then s:= s+ b(n, [l[j]$j=1..k-1, q$j=k..i,

           l[j]$j=i+1..m], d) fi od; s

      fi

    end:

A:= (n, k)-> `if`(n<k, A(k, n), `if`(k=0, 1,

              add(b(n, [0$k], d), d=numtheory[divisors](n*k)))):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

$RecursionLimit = 1000; b[n_, l_, d_] := b[n, l, d] = Module[{i, k, m, q, s, t}, Which[ Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t, d], True, k = Position[l, 0, 1][[1, 1]]; {s, m} = {0, Length[l]}; For[i = k, i <= m && l[[i]] == 0, i++, If[(Mod[d, 1+i-k]) == 0 && (q = Quotient[d, 1+i-k]) <= n, s = s + b[n, Join[l[[1 ;; k-1]], Table[q, {j, k, i}], l[[i+1 ;; m]]], d] ] ]; s ] ]; a[n_, k_] := a[n, k] = If[n < k, a[k, n], If[k == 0, 1, Sum[b[n, Array[0&, k], d], {d, Divisors[n*k]}]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Dec 17 2013, translated from Maple *)

CROSSREFS

Columns (or rows) k=0-10 give: A000012, A000005, A220768, A220769, A220770, A220771, A220772, A220773, A220774, A220775, A220776.

Main diagonal gives: A220778.

Sequence in context: A262750 A075402 A276696 * A088855 A034851 A172453

Adjacent sequences:  A220774 A220775 A220776 * A220778 A220779 A220780

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Dec 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 21 08:04 EDT 2018. Contains 313934 sequences. (Running on oeis4.)