login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A220777
Number A(n,k) of tilings of a k X n rectangle using integer-sided rectangular tiles of equal area; square array A(n,k), n>=0, k>=0, read by antidiagonals.
11
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 2, 9, 4, 9, 2, 1, 1, 4, 11, 20, 20, 11, 4, 1, 1, 2, 21, 7, 49, 7, 21, 2, 1, 1, 4, 24, 54, 115, 115, 54, 24, 4, 1, 1, 3, 43, 12, 343, 4, 343, 12, 43, 3, 1, 1, 4, 62, 190, 850, 1225, 1225, 850, 190, 62, 4, 1
OFFSET
0,8
LINKS
EXAMPLE
A(3,5) = 7, because there are 7 tilings of a 5 X 3 rectangle using integer-sided rectangular tiles of equal area:
._____. ._____. ._____. ._____. ._____. ._____. ._____.
| | | | | | |_____| |_____| |_____| | | | | |_|_|_|
| | | | | | |_____| |_____| | | | | | | | | |_|_|_|
| | | | | | |_____| | | | | | | | | |_|_|_| |_|_|_|
| | | | | | |_____| | | | | |_|_|_| |_____| |_|_|_|
|_____| |_|_|_| |_____| |_|_|_| |_____| |_____| |_|_|_|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 3, 2, 4, 2, 4, ...
1, 2, 4, 6, 9, 11, 21, 24, 43, ...
1, 2, 6, 4, 20, 7, 54, 12, 190, ...
1, 3, 9, 20, 49, 115, 343, 850, 2401, ...
1, 2, 11, 7, 115, 4, 1225, 7, 15242, ...
1, 4, 21, 54, 343, 1225, 7104, 31777, 169952, ...
1, 2, 24, 12, 850, 7, 31777, 4, 1300180, ...
1, 4, 43, 190, 2401, 15242, 169952, 1300180, 13036591, ...
...
MAPLE
b:= proc(n, l, d) option remember; local i, k, m, q, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), d)
else for k do if l[k]=0 then break fi od; s, m:=0, nops(l);
for i from k to m while l[i]=0 do if irem(d, 1+i-k, 'q')=0
and q<=n then s:= s+ b(n, [l[j]$j=1..k-1, q$j=k..i,
l[j]$j=i+1..m], d) fi od; s
fi
end:
A:= (n, k)-> `if`(n<k, A(k, n), `if`(k=0, 1,
add(b(n, [0$k], d), d=numtheory[divisors](n*k)))):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
$RecursionLimit = 1000; b[n_, l_, d_] := b[n, l, d] = Module[{i, k, m, q, s, t}, Which[ Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t, d], True, k = Position[l, 0, 1][[1, 1]]; {s, m} = {0, Length[l]}; For[i = k, i <= m && l[[i]] == 0, i++, If[(Mod[d, 1+i-k]) == 0 && (q = Quotient[d, 1+i-k]) <= n, s = s + b[n, Join[l[[1 ;; k-1]], Table[q, {j, k, i}], l[[i+1 ;; m]]], d] ] ]; s ] ]; a[n_, k_] := a[n, k] = If[n < k, a[k, n], If[k == 0, 1, Sum[b[n, Array[0&, k], d], {d, Divisors[n*k]}]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
CROSSREFS
Columns (or rows) k=0-10 give: A000012, A000005, A220768, A220769, A220770, A220771, A220772, A220773, A220774, A220775, A220776.
Main diagonal gives: A220778.
Sequence in context: A075402 A373270 A276696 * A088855 A034851 A172453
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 19 2012
STATUS
approved